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ABSTRACT

KEYWORDS: RCP; Stability; Bifurcations; Feedback.

There is growing interest in explicit congestion control protocols as they promise a fair

and a stable network.

In this thesis, we consider the Rate Control Protocol (RCP) and some different mod-

els that have been proposed to represent it. Our objective is to better understand the

impact of the protocol parameters and the effect different forms of feedback have on

the stability of the network. We also highlight that different time scales, depending on

the propagation delay relative to the queuing delay, have an impact on the nonlinear

and the stochastic properties of the protocol fluid models. To better understand some

of the nonlinear properties, we resort to local bifurcation analysis where we exhibit the

existence of a Hopf type bifurcation that then leads to stable limit cycles.

Our work serves as a step towards a more comprehensive understanding of the non-

linear fluid models that have been used as representative models for RCP.
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CHAPTER 1

Introduction

With ever increasing demands on the Internet, current architectures and protocols are

under strain as users have high expectations on the quality of service they expect from

communication networks. It is well known that congestion control is one such area

where there has been a need to update the currently implemented protocols. Explicit

congestion control is a promising avenue in the quest for fair and stable flow control

algorithms. In the class of explicit flow control algorithms, the Rate Control Protocol

(RCP) is a potential protocol for future high bandwidth-delay product environments.

A flow control algorithm should be fair, stable, and offer a low delay, low loss and

high utilisation network. TCP uses loss as its feedback mechanism to manage its flow

and congestion control algorithms. Thus it could be expected that such implicit feed-

back could make it difficult to enhance flow completion times. Additionally, numer-

ous studies have exhibited that the standard Additive Increase Multiplicative Decrease

(AIMD) TCP protocols (5; 6) are unsuitable for next generation networks. The need for

more explicit feedback is well recognised, which in turn motivates the requirement for

a comprehensive theoretical framework within which to design transport protocols.

1.1 Prior work on RCP

RCP has received a lot of attention from the research community in recent years. In (10),

some stability properties of a max-min RCP in small buffer regime were developed. In

(1), some sufficient conditions for local stability of explicit congestion protocols, such

as RCP and eXplicit Congestion control Protocol (XCP), were developed computation-

ally. In (8), a dynamic environment with RCP flows arriving and departing over a single

link was considered. In (7), an α-fair variant of RCP was developed and some of the as-

sociated local stability properties were investigated. Also, in (3), a NetFPGA hardware



implementation of RCP was developed. The range of these studies exhibit the rather

difficult nature of the problem of developing a new transport protocol.

Fluid models have arisen as a powerful tool within which to address some aspects

of protocol design and for performance evaluation. To that end, in this thesis, we too

will focus on the analysis of some nonlinear fluid models to better understand some of

the equilibrium properties of RCP. In particular, RCP routers obtain rate estimates from

two forms of feedback: one is based on rate mismatch and the other is from the queue

size. Thus far the role of both forms of feedback has not been well understood. In order

to understand the role played by modelling the queue as a deterministic fluid quantity,

the authors in (1) study the stability of explicit congestion controllers by considering

a linear switched control system with time delay using discretised Lyapunov function-

als. They develop sufficient conditions to guide local stability based on computational

analysis. Additionally, there are protocol parameters which influence stability and link

utilisation; guidelines on how to choose these parameters are not fully developed.

1.2 Problem statement

1.2.1 Questions addressed

In this thesis, we deal with the following issues and answer the questions they pose.

1. We consider the role played by queue feedback in RCP performance. We provide

evidence to suggest that at the packet level operation of the protocol, the non-switched

queue dynamics, in RCP, is more appropriate and in this regime we develop necessary

and sufficient conditions for local stability of RCP.

• We observe, from the results of some packet level simulations, the inherent non-

linear aspects of the protocol. We then study this computationally and explore

the phenomena that occur when the conditions for local stability of the system

are violated.

2. We then study another model for RCP, where the queue is not modelled as a sep-

arate fluid quantity, but is a deterministic representation for the underlying stochastics.
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In this model, we further develop the understanding of RCP by considering local sta-

bility and a local bifurcation analysis. This is done by varying the network parameters,

which impact the stability and the link utilisation.

• Subsequently, we understand further aspects of this model, such as the impact of

the various time scales, the effects of utilisation and the impact of the parameter

a on the stability of the system.

• We also address the issue of queue feedback on the stability of the system, which

is a key concern.

1.2.2 Why is this work significant?

Rate controlled protocols have a claim to be able to provide a network with high and

controllable utilisation, very low loss, high throughput and short flow completion times.

We, therefore, would like to explain the various phenomena under varying network

conditions in which the system can run the protocols.

Moreover, since this is an engineered system, we have control over the microscopic

rules that lead to desirable macroscopic properties. These desirable properties are sta-

bility, high utilisation, low loss and high throughput. Of this, stability is of top priority,

as we need engineered systems to be well behaved so as to be able to provide guaran-

tees on quality of service, such as high utilisation and throughput. Therefore, studies

focused on issues of stability, and the impact of various parameters on the stability of

the system are important, from an engineering perspective, as they aid us in choosing

the correct design parameters that lead to an ideal functioning of the system.

1.3 Organisation of the thesis

The rest of this thesis is organised as follows. In Chapter 2, we outline and analyse the

stability of some models for RCP. In Chapter 3, we study some more properties of RCP

with respect to the small buffer variant of RCP. We summarise our contributions and

outline avenues for future work in Chapter 4. Details regarding the design of the packet

level simulator used for some of the results presented is described in Appendix A.

3



CHAPTER 2

Models of RCP

The first step towards understanding any protocol is modelling. To that end, in this

chapter, we outline two nonlinear dynamical systems models for the Rate Control Pro-

tocol (RCP) (1; 7). These models have previously been motivated with the objective to

help design and better understand the performance of RCP.

In the operation of RCP, the feedback from the routers to the end-systems is time-

delayed which makes it important to understand the stability properties of the nonlinear

models. Most of the previous analysis has focused on conditions that may help to ensure

that the nonlinear system is locally stable. To better understand the impact of stability a

key focus will be on developing some necessary and sufficient conditions for stability,

and exploring computationally and analytically the consequences of such local stability

conditions being violated where bifurcation phenomena may readily occur.

2.1 Model A

The protocol strives to estimate the fair rate through a single bottleneck link from the

rate mismatch and the queue size. In order to understand the performance of the pro-

tocol, the following nonlinear dynamical system for the rate and the queue has been

proposed (1; 4):

d

dt
R(t) =

R(t)

CT

(

a(C − y(t))− β
q(t)

T

)

(2.1)

where

y(t) =
∑

s

R(t− Ts) (2.2)

and
d

dt
q (t) = [y (t)− C] q (t) > 0

= [y (t)− C]+ q (t) = 0,

(2.3)



using the notation x+ = max(0, x). Here R(t) is the rate being updated by the router,

C is the link capacity, y(t) is aggregate load at the link, q(t) is the queue size, Ts is

the round trip time (RTT) of flow s, and T is the average round trip time, over the

flows present. In the formulation of the RCP equation (2.1), a and β are non-negative

dimensionless parameters. It is important to understand the impact that these parameters

would have on the performance of the protocol.

The nonlinear rate equation (2.1) utilises two forms of feedback: one for the rate

mismatch which is characterised by C − y (t), and another for the instantaneous queue

size, q (t). The rate mismatch term causes the rate to increase if the utilisation is lower

than the link capacity C and the queue feedback term serves to decrease the feedback

rate as the queue size in the router starts to build up.

Some sufficient conditions for the local stability of the system of equations (2.1),

(2.2), (2.3), about its equilibrium point, were derived in (1), using analytics which were

developed for a “switched” linear control system with a time delay. The analysis took

due consideration of the discontinuity in the system dynamics, which would occur as

the queue size approaches zero. This aspect of the model formulation was explicitly

taken into consideration. We do, however, observe that the analysis was applicable to

the fluid model, as opposed to a packet level description of the protocol.

The sufficient conditions, on the non-negative and dimensionless parameters a and

β, take the functional form

a <
π

2
(2.4)

and β < f(a) where f(·) is a positive function that depends on T .

We now present some packet level simulations, taken from (7) with permission, that

have been performed for RCP using a discrete event simulator, details regarding which

are presented in the Appendix A. A key objective of these simulations is to exhibit some

nonlinear properties of RCP. They also serve to exhibit that the queue, in equilibrium,

may not sit at zero but rather the mean queue size would be close to it.

The network being simulated consists of a single bottleneck link with a capacity of

one packet per unit time and 100 Poisson sources. The RTT has been chosen as 100

time units. The parameters with queue feedback are: a = 0.5, β = 1 for a utilisation of

5



90%; the parameters without queue feedback are: a = 1, β = 0. When queue feedback

is removed, we substitute the capacity, C, with γC to target a utilisation of γ × 100%.

Hence, we choose γ = 0.9 to get a target utilisation of 90% when queue feedback is

removed. In Fig. 2.1, we show the traces of queue size term, with and without queue

feedback.
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(a) With q(·) feedback (b) Without q(·) feedback

Figure 2.1: Traces from a packet-level simulation of a single bottleneck link with ca-

pacity of 1 packet per unit time, 100 RCP sources, round trip time of 100
time units, and a target link utilisation of 90%. The parameter values used

are (a) a = 0.5; β = 1, and (b) a = 1; β = 0; γ = 0.9.

With queue feedback, and for the parameter values chosen, we observe deterministic

instabilities in the queue size term in the form of nonlinear oscillations. On the other

hand, without queue feedback, for the chosen parameter values, we observe that the

queue size term is stable. However, the queue size has a non zero equilibrium value,

which helps us to motivate our subsequent stability analysis for necessary and sufficient

conditions. Clearly, the two forms of feedback are playing a non-trivial role which

would not be apparent from a linear system. Due to this, we also need to understand the

protocol behaviour when conditions for stability are violated.
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2.1.1 Stability analysis

We shall now understand the local stability of Model A. Since we wish to focus on the

nonlinearity of the model, we consider the following modified equation for the queue

dynamics, instead of equation (2.3)

q̇ (t) = [y (t)− C] ∀q (t) . (2.5)

Let us consider that all the flows through the bottleneck link have a common RTT,

T . Our system is now represented by the equations (2.1), (2.2), (2.5). The fixed points

for these equations are:

R⋆ = C/n

q⋆ = 0,
(2.6)

where n is the number of flows. Upon linearising equations (2.1), (2.2), (2.5) about the

fixed point and on further simplification, we get

ṙ (t) = − a

T
(r (t− T ))− β

nT 2
q (t)

q̇ (t) = nr (t− T ) ,

(2.7)

where R (t)−C/n = r (t). Substituting q̇ (t + T ) = nr (t) in equation (2.7) and taking

a Laplace transform, we get:

S2T 2eTS + aTS + β = 0, (2.8)

where S is the complex argument in the frequency domain that is obtained by taking

the Laplace transform of the time domain equation (2.7). We consider two cases: when

β = 0, which translates to the queue feedback being absent, and when β > 0 that

implies that the queue feedback is present.

7



Without queue feedback

In this case, we substitute β = 0 in equation (2.7) and we get

STeTS + a = 0. (2.9)

If we let TS = λ, then equation (2.9) becomes

λeλ + a = 0. (2.10)

To analyse this case, we introduce a new parameter, η, in equation (2.10) as follows:

λeλη + a = 0. (2.11)

Then, we substitute λ = jω, where j =
√
−1, and equate the real and imaginary

parts to obtain

ω cos (ωη) = 0

ω sin (ωη) = a,
(2.12)

which simplifies to ωη = (2m+ 1)π/2 and ω = a. However, we consider the smallest

value of ωη that satisfies equation (2.12) for which a = π/ (2η). We also note that

when η = 0, the only root of equation (2.11) is λ = −a that is stable. Now, using

Rouché’s theorem (9), we find that the system represented by equation (2.11) is stable

if η < π/ (2a). With η = 1, we get back our original characteristic equation, and the

stability condition becomes

a <
π

2
. (2.13)

This is a necessary and sufficient condition for local stability for the system of equa-

tions (2.1), (2.2), (2.5) when β = 0, which implies that there is no queue feedback.

8



With queue feedback

With β > 0 we get the following characteristic equation from equation (2.8) by letting

TS = λ:

λ2eλ + aλ+ β = 0. (2.14)

Once again, we introduce a new parameter η as follows:

λ2eηλ + aλ+ β = 0. (2.15)

By substituting λ = jω (j =
√
−1) in the above equation and equating the real and

imaginary parts to zero, we get:

−ω2 cos (ηω) + β = 0

−ω2 sin (ηω) + aω = 0.
(2.16)

Upon simplifying the above equations, we get:

ω4 − a2ω2 − β2 = 0 (2.17)

⇒ ω = ±

√

a2 +
√

a4 + 4β2

2
, (2.18)

as ω2 is non-negative. Now, ω sin (ηω) = a as ω 6= 0 if a > 0.

⇒ η =
1

ω
sin−1

( a

ω

)

. (2.19)

Now, if a and β are fixed and η = 0, our characteristic equation becomes λ2+ aλ+

β = 0 whose roots have negative real parts as a is positive. Hence, when η = 0, the

roots of equation (2.15) are stable. Once again, using Rouché’s theorem, we get

η <
1

ω
sin−1

( a

ω

)

(2.20)

9



0 π 4 π 2

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

β

a

Stable region

Figure 2.2: Stability chart for Model A

as the stability condition for the system corresponding to the characteristic equation (2.15).

With η = 1, we obtain our original characteristic equation (2.14) from the characteristic

equation (2.15). Therefore, the stability condition for the linearised system correspond-

ing to the characteristic equation (2.14) is:

1 <
1

ω
sin−1

( a

ω

)

, (2.21)

which can be simplified as,

tan

√

a2 +
√

a4 + 4β2

√
2

<
a

β

√

a2 +
√

a4 + 4β2

√
2

, (2.22)

which is the necessary and sufficient condition for the local stability for the system of

equations (2.1), (2.2), (2.5) when β > 0. In Fig. 2.2, we show the region in the (a, β)

parameter space where the linearised model of RCP is stable.

We performed numerical computations for Model A and presented the results in

Fig. 2.3. We chose β = 0.3 and varied the parameter a. We chose RTT, T = 0.1

time units; capacity, C = 100, 000 packets per unit time; number of flows, s = 100.

We plotted the bifurcation diagrams and the phase portraits, both with and without the

switch in the queue dynamics. Our first observation is that as the parameter a is varied

across the boundary of the stability region, which we derived, the system becomes

10



1.1 1.4 1.7 2.0

0
3
0
0
0

6
0
0
0

−18000 −7000 0 7000 18000

0
2
5
0
0

5
0
0
0

(a)

1.0 1.4 1.8 2.2 2.6 3.0 3.4

0
5
0
0
0

1
0
0
0
0

0 35000 70000

0
5
0
0
0

1
0
0
0
0

(b)

ra
te
,
R
(t
)

ra
te
,
R
(t
)

ra
te
,
R
(t
)

ra
te
,
R
(t
)

a

a

queue, q (t)

queue, q (t)

a = 1.9
a = 1.5
a = 1.1

a = 3.3
a = 1.8
a = 1

Figure 2.3: Numerical computations for Model A: (a) Bifurcation diagram (left) and

phase portrait (right) for the “non-switched” case, with β = 0.3 and a
is varied, (b) Bifurcation diagram (left) and phase portrait (right) for the

“switched” case, with β = 0.3 and a is varied. Other parameter values are:

RTT, T = 0.1 time units; Capacity, C = 100, 000 packets per unit time;

Number of flows, s = 100.

unstable. However, unlike linear systems, which blow up exponentially when unstable,

the dynamics of the rate term enters a nonlinear cycle.

These cycles are visually apparent in the phase portraits. (The cycle for a = 1.1, in

the non-switched case, and a = 1, in the switched case, are so small that they had to

be represented using a square box.) We also note that the fixed point becomes unstable.

When a fixed point switches its stability as a parameter is varied, it is said to undergo

a bifurcation. Hence, we note that the dynamics of Model A undergo a bifurcation at

the boundary of the stability region. We note that the analysis in section 2.1.1 is done

for the system of equations (2.1), (2.2), (2.5). We have neglected the switching in the

dynamics of the queue size to highlight the nonlinearity in the dynamics of the rate

term. Nevertheless, we note that the actual behaviour of RCP is better represented by

the system of equations (2.1), (2.2), (2.5). For instance, from Fig. 2.1 we note that

the mean queue size in the packet level simulations was not zero. Hence, the switch

in the queue size dynamics does not play a vital role, since the equilibrium queue size

11



is non zero. To further understand the difference between the two scenarios, we again

refer to the results of the numerical computations performed for Model A, presented

in Fig. 2.3. We note that in both the scenarios, the dynamics of the rate term under-

goes a bifurcation with respect to the parameter a. The phase portraits show that both

cases are topologically equivalent as we can obtain one phase portrait from the other by

distorting it appropriately. Rigorously speaking, topologically equivalence implies that

there exists a homeomorphism (a continuous deformation with a continuous inverse)

that maps one local phase portrait onto the other, such that a trajectory is mapped to a

corresponding trajectory and the sense of time (direction of the arrows on the phase por-

trait) is maintained. It is, therefore, reasonable to analyse Model A without the switch

in the queue size dynamics.

Elaborating on topological equivalence, we note that the fixed points and closed

orbits of two topologically equivalent phase portraits share the same stability as we can

obtain one phase portrait from the other by merely distorting it (without allowing for

ripping of the phase portraits). Moreover, the sense of time is also maintained. Hence

closed orbits remain closed and trajectories that connect saddle points remain unbroken,

etc. More importantly, the stability of these fixed points and closed orbits also remains

the same. This is an important observation about phase portraits that we shall use again,

later on.

We now present another model used to represent RCP.

2.2 Model B

Model A accounts for the queue term explicitly via the differential equations (2.3), (2.5).

We now outline a small buffer model of RCP. In this regime, the queue size fluctuates

so rapidly that it becomes impossible to respond to and control its actual size. Instead,

RCP behaves as if it is responding to a distribution of the queue size. Therefore, at

the time scale pertinent for the convergence of the system, the mean queue size is more

important. It is also assumed that the queuing delay is negligible compared to the

propagation delay, which conforms with the small buffer assumption.
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A small queue variant of RCP that is proportionally fair is described by the following

nonlinear differential equations (7)

d

dt
Rj (t) =

aRj (t)

CjT j (t)
(Cj − yj (t)− bjCjpj (yj (t))) (2.23)

where

yj (t) =
∑

r:j∈r

xr (t− Trj) (2.24)

is the aggregate load at resource j summed over all the routes, r, containing resource

j; xr (t) is the flow rate leaving the source of route r; pj (yj) is the mean queue size at

link j when the load there is yj; capacity of resource j is Cj; and

T j (t) =

∑

r:j∈r xr (t) Tr
∑

r:j∈r xr (t)
(2.25)

is the average RTT of packets passing through resource j. Here, Tr is the sum of the

propagation delay from the source of the flow on route r to resource j (Trj) and the

propagation delay from the resource j to the source of the flow on route r (Tjr). In

equation (2.23), a and bj are non-negative dimensionless parameters. Let the flow rate

xr (t) leaving the source of route r at time t be given by

xr (t) = wr

(

∑

j∈r

Rj (t− Tjr)
−1

)

−1

, (2.26)

wherewr is the weight given to route r. We can obtain an expression for the mean queue

size in the following way: consider the arriving workload at resource j is Gaussian over

a time period τ , with mean yjτ and variance yjτσ
2
j . Then the workload present at the

queue is a reflected Brownian motion, with mean under its stationary distribution of

pj (yj) =
yjσ

2
j

2 (Cj − yj)
. (2.27)

In essence, the queue size term is being modelled by pj (yj) as described in equa-

tion (2.27). The parameter σj determines how variable the traffic at resource j is. For

instance, if σj = 1, then the traffic is Poisson.

13



We should note that the parameter a in both the models is the same. The parameter

bj of Model B can be related to the parameters a and β of Model A by the equation

bj =
β

aCjT j

. (2.28)

The parameter bj affects the utilisation of resource j at equilibrium. From equa-

tion (2.27) and considering the condition for the equilibrium of the nonlinear dynamical

system depicted by Model B, we can evaluate the utilisation of resource j, ρj as

ρj ≡
yj
Cj

= 1− σj

√

(

bj
2
.
yj
Cj

)

, (2.29)

which can be simplified as

ρj = 1− σj

√

(

bj
2
.ρj

)

, (2.30)

which simplifies to

ρj = 1− σj

√

(

bj
2

)

+O
(

σ2

j bj
)

. (2.31)

2.2.1 Stability analysis

In (7), a sufficient condition for the local stability of Model B, for heterogeneous prop-

agation delays, has been presented in the presence and absence of queue feedback. It is

shown that, for the system to be stable in the presence of queue feedback,

a <
π

2
, (2.32)

is a sufficient condition. Whereas, for the system to be stable in the absence of queue

feedback,

a <
π

4
, (2.33)

is a sufficient condition.

Here, we present the necessary and sufficient conditions for the local stability of this

14



model, for a homogeneous propagation delay, both in the presence and in the absence

of queue feedback. We note that we get similar sufficient conditions as mentioned in

(7). We also prove, analytically, the existence of a Hopf bifurcation at the edge of the

stability region, both with and without queue feedback.

With queue feedback

For analysing the stability of Model B, we consider the following scenario. Let the

network consist of a single bottleneck link with capacityC, a single route and a common

RTT, τ , for all the flows. As there exists only one route and one resource, we shall drop

the subscripts, j and r. All the flows send Poisson traffic, hence, σ = 1. We take w = 1

as this only affects the equilibrium point. For this scenario, the general rate equation in

equation (2.23) becomes

d

dt
R (t) =

aR (t)

Cτ
(C − y (t)− bCp (y (t))) (2.34)

where

y (t) = R (t− τ) (2.35)

and

p (y) =
y

2 (C − y)
. (2.36)

We now linearise equation (2.34) using the Taylor expansion of the right hand side

about the equilibrium point. Let us consider R (t) = r (t) + R⋆, where R⋆ is the

equilibrium value of R (t), and r (t) is a small perturbation about the equilibrium point.

Using this and using equations (2.35), (2.36) we can simplify equation (2.34) as

d

dt
(r (t) +R⋆) =

d

dt
(r (t)) = −a

(

R⋆ + C

Cτ

)

r (t− τ) . (2.37)

At equilibrium, the right hand side of equation (2.34) is zero. Hence, the equilibrium

rate is

R⋆ = C

(

b+ 4−
√
b2 + 8b

4

)

. (2.38)
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Since there is queue feedback, the parameter b is positive. Using equations (2.37),

(2.38), we get

d

dt
(r (t)) = −κr (t− τ) , (2.39)

where κ = a
(

2 + b/4−
√

b2/16 + b/2
)

/τ . By taking the Laplace transform of equa-

tion (2.39), we get the characteristic equation

λ+ κe−λτ = 0, (2.40)

where λ is the complex argument in the frequency domain that is obtained by taking

the Laplace transform of the time domain equation (2.39). Once again, we use the same

trick used earlier and introduce a new parameter η as follows:

λ+ κe−λτη = 0. (2.41)

By substituting λ = jω, where j =
√
−1, in the above equation and comparing real

and imaginary parts, we get

κ cos (ωτη) = 0

κ sin (ωτη) = ω.
(2.42)

On solving, we get κτη = π/2. We note that when η = 0, the only solution of

the characteristic equation (2.41) is λ = −κ, which is stable. Hence, using Rouché’s

theorem, we note that κτη < π/2 is the necessary and sufficient condition for the

stability of system represented by the characteristic equation (2.41). We obtain our

original characteristic equation by choosing η = 1 in the characteristic equation (2.41).

Hence, the necessary and sufficient condition for the local stability of Model B is κτ <

π/2, which is

a

(

2 +
b

4
−
√

b2

16
+

b

2

)

<
π

2
. (2.43)

If we substitute b→ 0 in equation (2.43), we get

a <
π

4
. (2.44)
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This is the sufficient condition for local stability of Model B, with queue feedback

since b → 0+ (where 0+ refers to approaching zero from the right, in the limit b → 0).

This is because, as seen from the stability chart in Fig. 2.4, for all b > 0, the region

a < π/4 falls in the stable region.

In equation (2.43), we note that as b→∞, a→ π/2. This can be shown by the fact

that

lim
b→∞

(

1 +
b

4
−
√

b2

16
+

b

2

)

= 0. (2.45)

Without queue feedback

Again, we consider the same scenario as with queue feedback. Hence, we consider

the rate equation (2.34) and choose b = 0 in it and perform the analysis. Once again,

let R (t) = r (t) + R⋆, where R⋆ is the equilibrium value of R (t) and r (t) is a small

perturbation about the equilibrium point. Using this and using equations (2.35), (2.36),

we can linearise equation (2.34), with b = 0, as

d

dt
(r (t) +R⋆) =

d

dt
(r (t)) = −

(

aR⋆

Cτ

)

r (t− τ) . (2.46)

At equilibrium, the right hand side of equation (2.34) is zero. However, in this case,

b = 0 and therefore the equilibrium rate value turns out to be

R⋆ = C. (2.47)

Let us define ζ = a/τ . So, the right hand side of equation (2.46) is −ζr (t− τ).

The characteristic equation, in this case, is

λ+ ζe−λτ = 0, (2.48)

where λ is the complex argument in the frequency domain that is obtained by taking

the Laplace transform of the time domain equation (2.39). Again, we introduce a new

parameter η as follows:

λ+ ζe−λτη = 0. (2.49)
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Figure 2.4: Stability chart for Model B

Proceeding similarly as with queue feedback case, we substitute λ = jω, where

j =
√
−1, and equate the real and imaginary parts to zero and solve the equations to

get,

ζτ = a <
π

2
(2.50)

as the necessary and sufficient condition for the local stability of the Model B when

b = 0, that is without queue feedback.

To summarise, we have obtained the necessary and sufficient condition for the local

stability of Model B when b > 0 (in the presence of queue feedback) in equation (2.43)

and the sufficient condition alone is presented in equation (2.44). The necessary and

sufficient condition for local stability of Model B when b = 0 (in the absence of queue

feedback) is presented in equation (2.50).

We plot the stability chart for this model in Fig. 2.4. The region above the curve

is the stability region. We note that there is a discontinuity in the stability chart. This

provides further evidence supporting the two distinct necessary and sufficient conditions

obtained above, for the two forms of feedback.
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Hopf bifurcation

We now show that the system undergoes a Hopf bifurcation as a is varied. Consider

the linearised rate equation (2.39), derived with queue feedback. Let us redefine κ

as κ = ξ × a/τ , where ξ = 2 + b/4 −
√

b2/16 + b/2. Then, we get the following

characteristic equation:

λ+
aξ

τ
e−λτ = 0. (2.51)

Differentiating the above equation with respect to a, we get

dλ

da
+

ξ

τ
e−λτ − aξe−λτ dλ

da
= 0, (2.52)

⇒ dλ

da
=

1

aτ − τ
ξ
eλτ

. (2.53)

Now, we find the sign of R
(

dλ
da

)

at the boundary region, where R (z) is defined as

the real part of the complex number z.

R
(

dλ

da

)

= R
(

1

aτ − τ
ξ
eλτ

)

⇒ Sign

(

R
(

dλ

da

))

= Sign

(

R
(

1

aτ − τ
ξ
eλτ

))

= Sign
(

R
(

ξa− eλτ
))

= Sign

(

R
(

a+
a

λτ

))

= Sign (a) > 0,

(2.54)

where the last part was obtained by substituting for eλτ from equation (2.51). Since the

real part of λ is zero, we get the sign of R
(

dλ
da

)

as that of a (since a is real), which is

positive. This implies that at the boundary of the stability region,R
(

dλ
da

)

6= 0. However,

we note that at this boundary,R (λ) = 0, and within the stability region,R (λ) < 0, as

the system is stable. This implies that as we cross the stability region, R (λ) becomes

positive, which means that the fixed point corresponding to this λ becomes unstable.

Therefore, as a fixed point changes its stability across this boundary, we say that it

19



undergoes a Hopf bifurcation. Incidentally, the condition R
(

dλ
da

)

6= 0 is called the

transversality condition for a Hopf bifurcation.

We have shown that the system undergoes a Hopf bifurcation at the boundary of the

stability region, when there is queue feedback, as we started with equation (2.39). How-

ever, the same analysis holds for the case of no queue feedback as the only difference

is that, now ξ = 1.
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CHAPTER 3

Further properties of RCP

So far, we have described two nonlinear dynamical systems models of RCP and anal-

ysed their stability. We have also studied, analytically, the existence of a Hopf type

bifurcation at the edge of the stability region in Model B. Using these analysis and un-

derstanding, we shall uncover certain other aspects of Model B that will aid us in the

design process of RCP. To that extent, in this chapter, we shall first study the impact of

the multiple time scales on RCP. A question of paramount concern is the effect of queue

feedback on the stability of RCP, which we shall subsequently address in this chapter.

We also study the impact of utilisation and the effect of parameter a on the stability of

RCP.

3.1 Impact of multiple time scales

There exist four key time scales, which impact the dynamics of RCP, in the following

ranges relative to queuing delay (abbreviated as qd): ≫ qd, > qd, ≈ qd and < qd.

Queuing delay is obtained as B/C where B is buffer size and C is capacity of the link.

We call the time scale where propagation delay is very high compared to queueing

delay (≫ qd) as Time Scale 4 and number it downwards. We note that in this time scale,

the network behaves deterministically. Model B, presented in Chapter 2, represents the

system in this case. In Time Scale 3, the dynamics of the queue play a greater role and

certain stochastic effects come into play as a result. In Time Scale 2, the variations in

the rate and the queue size are in the same time scale and both the dynamics play a role.

The system behaves deterministically and is well represented by Model A of Chapter 2.

In Time Scale 1, the fluctuations in the rate are very rapid that there is no meaningful

way we can account for its dynamics. Hence, the system behaves more like a stochastic

one. There is currently no proper model to represent this time scale.



3.1.1 Analysis of the discrete event simulations

We now analyse the results, taken from (7) with permission, that have been obtained

from the discrete event simulator, which is described in the Appendix A. The simulated

network consists of a single bottleneck link with a capacity of one packet per unit time

and 100 Poisson sources. The RTT is varied from 100 to 100,000 units of time. We

choose a = 0.5 in Model B and choose b to attain different utilisation values using

equation (2.31), when queue feedback is included. When there is no queue feedback,

we choose a = 1, b = 0 and obtain a utilisation of γ × 100% (γ < 1) by replacing C

with γC. We plot, in Fig. 3.1, the utilisation as the parameter b is varied, with queue

feedback, and plot, in Fig. 3.2, the utilisation as γ is varied, without queue feedback.
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Figure 3.1: Utilisation, ρ, measured over one RTT, for different values of the parameter

b with 100 RCP sources sending Poisson traffic.

In both the plots, we note that in the case where RTT = 100,000 units of time, the

curves agree very well with the theoretical curve. Therefore, one can’t differentiate

between the two types of feedback. However, as the RTT is reduced, we note an in-

creased variability in utilisation in both the plots. This clearly shows that RTT indeed

impacts the stability and the dynamics of the system, whereas our linear analysis does
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Figure 3.2: Utilisation, ρ, measured over one round trip time, for different values of the

parameter γ with 100 RCP sources sending Poisson traffic.

not predict such a dependence. As RTT becomes very small, say 100 units of time, the

queuing delay becomes comparable to the propagation delay. Hence, the underlying

assumption of Model B breaks down, which relies on the fact that queuing delay is

negligible compared to propagation delay.

3.1.2 Numerical Analysis

Using Model B, we have performed further simulations and obtained bifurcation dia-

grams as a is varied. We plot these bifurcation diagrams in Fig. 3.3 and 3.4. In each

case, we have utilised a different value of RTT.We consider a network with a single bot-

tleneck link with capacity C = 10 packets per unit time and choose b = 0.2 in Model B.

For this, we analytically computed the stability criterion on a as a < 0.935 and we have

obtained a utilisation of 68%. Using equation (2.27), we calculate the average queue

size as 1.06. Therefore, we obtain queuing delay, qd = B/C = 1.06/10 = 0.106 units

of time, where B is the buffer size, which is the average queue size and C is the link

capacity. For these bifurcation diagrams, we choose RTT ≫ qd in order to consider
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Figure 3.3: Bifurcation Diagram with queue feedback, RTT = 0.6 time units
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Figure 3.4: Bifurcation Diagram with queue feedback, RTT = 1 time units

cases in Time scale 4. Two convenient values of RTT are 0.6 and 1 time units and these

are the values of RTT chosen for the two plots.

From these figures, we note that the bifurcation is affected as RTT is changed.

Specifically, we note that as the RTT increases, the value of a at which the bifurcation
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occurs increases slightly and the rate at which the amplitude of the limit cycle grows

decreases. The overall amplitude of the limit cycle also decreases to a certain extent.

Also, the limit cycles start earlier and finally become unstable later in case where RTT

= 1 time unit than in the case of RTT = 0.6 time units. This clearly shows that RTT

plays a more significant role in the stability of RCP and further analysis is required to

comprehend the impact of time scales on RCP fully.

3.2 Impact of queue feedback

Recall that, in Fig. 2.1, we have plotted the traces of queue size from packet level

simulations. We aimed at a utilisation of 90% by choosing the parameters a = 0.5,

β = 1, with queue feedback. The stability chart in Fig. 2.2 shows that a = 0.5

and β = 1 is outside the provably stable region and indeed we attain deterministic

instabilities in our simulations that can be seen in Fig. 2.1(a). In the absence of queue

feedback, to target a utilisation of 90%, we choose a = 1, β = 0 and γ = 0.9 where C

is replaced with γC. In this case, the RCP model only reacts to rate mismatch. From

Fig. 2.2, we note that a = 1 and β = 0 is within the provably stable region. Indeed,

the simulations did not produce any deterministic instabilities as can be evidenced from

Fig. 2.1(b). Therefore, in this regime, the presence of queue feedback causes the queue

to be less accurately controlled. This suggests that there is something fundamentally

different between these two forms of feedback and also shows evidence in favour of no

queue feedback.

In Model B, we have shown, analytically, that a Hopf bifurcation arises at the bound-

ary of the stability region, which signifies the emergence of limit cycles. Of course, it

is important to determine the stability of the bifurcating periodic orbit. An analytical

characterisation of the stability or instability of the bifurcating limit cycle is beyond the

scope of this thesis. However, the computations performed for Model B, as depicted

in Fig. 3.5, suggest that the limit cycles could indeed be stable. In Fig. 3.5, with

queue and without queue feedback, we observed stable limit cycles that were plotted

in the corresponding bifurcation diagrams. We observe that their corresponding phase

portraits are topologically equivalent, implying that the stability of the corresponding
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Figure 3.5: Numerical computations for Model B (on left, utilisation = 90%; on right,

utilisation = 70%) – With queue feedback (a) Phase portrait, (b) Bifurcation

diagram. Without queue feedback (c) Phase portrait, (d) Bifurcation dia-

gram. The values of the parameters are: RTT, T = 1 time unit; Capacity,

C = 10 packets per unit time; with queue feedback – b = 0.02 for 90%

utilisation , b = 0.18 for 70% utilisation; without queue feedback – b = 0,
γ = 0.9 for 90% utilisation, γ = 0.7 for 70% utilisation. The values of pa-

rameter a in (a) are chosen to be proportionally spaced from the bifurcation

boundary.
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fixed points and closed orbits, in the two scenarios, remain the same. We would like to

highlight that the computations done for Model A, represented in Fig. 2.3, also provide

evidence for the emergence of stable limit cycles as protocol parameters are varied. To

that end, the packet level simulations shown in Fig. 2.1, which exhibit nonlinear oscil-

lations appear to be induced via a Hopf type bifurcation. The simulations presented, the

computations and the analysis for the Hopf bifurcation together provide rather strong

evidence for a thorough investigation on the nonlinear dynamical characteristics for the

various RCP models outlined in this thesis.

3.3 Impact of utilisation

We shall now look at how varying utilisation impacts stability. From Fig. 3.5(b) and

3.5(d), we see that as utilisation is decreased, the system enters a limit cycle at a later

value of parameter a. The amplitude of the limit cycle also grows slower. This effect is

more pronounced with queue feedback. This suggests us that as utilisation is decreased,

the stability of the system increases.

3.4 Impact of parameter a

We observe in Models A and B that the parameter a appears along with the rate mis-

match term, C − y (t). Due to this, parameter a affects the speed at which the equilib-

rium rate is attained as the magnitude of the rate mismatch feedback changes with a.

We now show this using theoretical analysis.

We find the condition such that R
(

dλ
da

)

< 0, where R (z) is defined previously. If

R
(

dλ
da

)

< 0 and R (λ) < 0, then we realise that the solution of the linearised system

in equation (2.39), which is C0e
λt where C0 is a constant, decays faster as a increases.

This motivates our line of analysis.

Taking the expression for the sign ofR
(

dλ
da

)

obtained in section 2.2.1, we get that

Sign

(

R
(

dλ

da

))

= Sign

(

R
(

a +
a

λτ

))

. (3.1)
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On simplifying, the condition obtained forR
(

dλ
da

)

< 0 is

R (λ) > −1

τ
. (3.2)

We solve the characteristic equation (2.51) for λ = −1/τ and obtain a = 1/e. We

also note that when a = 0, λ = 0 which is greater than −1/τ . Hence, R
(

dλ
da

)

< 0,

which implies that as a increases the value of λ decreases. Obviously, there exists a

particular value of a after which λ < −1/τ and this value of a is 1/e. Therefore, we

note that the rate of convergence increases up to

a =
1

e
, (3.3)

and then decreases again beyond that. Simulations confirming this analysis have been

presented in (2).

Furthermore, we note that parameter a also affects the stability of the system, as is

observed from the necessary and sufficient conditions for local stability that have been

obtained in our stability analysis, in Chapter 2, for the two models of RCP considered.

Fig. 2.3 and 3.5 show the bifurcation diagram depicting the rate value as a is varied.

We note that the system enters a limit cycle for a range of values of a.

Considering the above analysis, we conclude that the optimal value of a should be

a =
1

e
, (3.4)

corresponding to the fastest rate of convergence.
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CHAPTER 4

Conclusions

Rate controlled protocols show potential for developing a fair and stable network archi-

tecture for the future high bandwidth-delay product networks. They claim to provide

a network with high utilisation, very low loss, a high throughput and short flow com-

pletion times. This makes it all the more important to study the properties and design

considerations of this class of protocols, one among which is the Rate Control Protocol

(RCP). In this thesis, we focussed on some equilibrium properties of some models of

RCP.

4.1 Contributions

Currently, the two nonlinear models that have been proposed have only been studied for

sufficient conditions to ensure local stability. To that end, for both these models, we de-

veloped necessary and sufficient conditions for local stability, under certain conditions.

As conditions for stability get violated, bifurcations may occur. For both the models,

we explored the consequences of parameters violating the stability conditions, and we

plotted the respective bifurcation plots for the emerging stable limit cycles. For the

small buffer variant of RCP, we also analytically showed that the bifurcation would be

a Hopf bifurcation, which does signify the emergence of limit cycles. We used this in-

sight, to help explain the potential destabilising effect of having two forms of feedback

in the protocol definition of RCP.

This, we believe, sheds light on a key architectural question concerning the design

of RCP, i.e. whether the protocol needs to estimate the fair rate from both rate mismatch

and queue size. Hopf type bifurcations, occurring due to the presence of queue size in

the feedback, open additional questions regarding the nonlinear properties of the fluid

models and their relationship with protocol design.



4.2 Future Work

First, it would be useful to exhibit that, in fact, both the models exhibit Hopf type

bifurcations. Then, it would be imperative to analytically verify the stability of the

emerging limit cycles as the Hopf conditions get violated. This would certainly enhance

our understanding of the RCP models. Additionally, for the small buffer variant of RCP,

it would be useful to ascertain the impact of the protocol parameters on the stochastic

effects. A fuller understanding of both the nonlinear and the stochastic effects would

help develop a comprehensive understanding of the protocol parameters, and the role of

queue feedback.

30



APPENDIX A

Discrete event simulator - Packet level simulations

The program used for simulating the network running the Rate Control Protocol (RCP)

was written in C# on Windows. Here, we describe the main logic behind the program.

After all the necessary variables have been declared, the following is done in the

program during each time step:

for i = 0 to maxIndex do

PktSendT ime[i]← ExpRandomV (1/Rate)

end for

tempRate← Rate

for i = 0 to maxIndex do

PktSendT ime[i]← tempDelay[i] + PktSendT ime[i] ∗ 100000

end for

In the above code, the program assigns the exponential inter-arrival time, between

consecutive packets sent by each of the 100 sources, in the array PktSendT ime (im-

plying that maxIndex = 99). The previous time that a source sent a packet is stored

in tempDelay. We add the inter-arrival times to this array, so that the PktSendT ime

array finally contains the actual time when each source sends the next packet. The

multiplication by 100000 is done since 1 second is taken as 100000 time steps.

for iter = 0 to RTT do

timestep ++

if timestep ≥ timeStepMax then

break

end if

if pipe = 1 then

pipe← 0

end if



for i = 0 tomaxIndex do

if PktSendT ime[i] ≤ timestep then

numPktArrCurr ++

PktSendT ime[i]← NextPktAt(i, tempRate)

end if

SendPacket()

end for

if noPktSentAbove then

SendPktFromQ()

end if

PropagatePkts()

if newPktsArrivedAtLink then

EvalNewRate()

end if

queueSize[timestep] ← currQSize

rate[timestep] ← currRate

EvalUtilisation(timestep)

end for

Here, we have abstracted several tasks into convenient functions. Firstly, we note

that a source sends a packet whenever the current time step is greater than the time step

value contained in the array PktSendT ime, which is the time the source is supposed

to send a packet. When this occurs, the function NextPktAt() generates the time at

which a particular source needs to send the next packet, which is calculated similar to

the way it was done in the first algorithm snippet. It adds the exponential inter-arrival

time to the last time a packet was sent by a source. The resultant value is the time step

at which the source will send the next packet.

The SendPacket() function checks if the link is idle or not. This is identified via

the pipe variable. If it is 1, then a packet is currently being sent, and so the program

adds the current packet to the queue, represented by an integer queue. This integer

stores the number of packets in the queue. The program ensures that the queue size

does not exceed 100. If pipe is 0, then the program sends the packet onto the link. It
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takes RTT/2 time steps for a packet to cross the link. Therefore, the program keeps a

track of the number of time steps left before a packet is transmitted completely.

If none of the sources sends a packet in the current time step, then the program sends

a packet from the queue using the SendPktFromQ() function, wherein it decrements

queue size by 1 and then sends the packet as done in SendPacket().

Subsequently, the program propagates the packets. As noted earlier, it takesRTT/2

time steps for a packet to transit the link. The function PropagatePkts() handles this

by decreasing the number of time steps remaining to transit a packet. It does this main-

tenance for each packet in the link. When a packet is completely transmitted, it adds 1

to the total number of packets sent.

The function EvalNewRate() evaluates the updated value of rate as per the equa-

tion (2.1). It implements a discrete version of the differential equation and updates the

rate whenever a new packet has arrived at the link. While updating the rate, the pro-

gram may vary several parameters in equation (2.1), such as β or γ, in order to consider

several scenarios, during different runs of the program. Subsequently, the current queue

size and rate values are stored in corresponding arrays.

Finally, the program evaluates the utilisation values every time step via the function

EvalUtilisation(). It does this in the following way: let the link have a capacity of

sending C packets/second. Let the RTT be T . Then, in T time steps, the link should

be able to send C × T packets if the link where used at 100% utilisation. If the link

actually sent x packets in the previous T time steps, then the Utilisation is x
CT
× 100%.

The above algorithm is repeated for each RTT. Once the program executes the above

code, an RTT of time steps are over and the program updates the rate used for calculat-

ing when the next set of packets are sent. Once the program finishes executing the code

for one set of parameters, the program stores relevant data such as Rate versus time,

Queue Size versus time, Utilisation versus time, Utilisation versus γ and Utilisation

versus β. Then, the program changes the parameters to consider a new scenario and the

process continues.

This concludes our explanation of the functioning of our program.
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